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on the detection of Cherenkov light.
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IceCube Upgrade WOM

1. The IceCube Neutrino Observatory and the IceCube Upgrade

The IceCube Neutrino Observatory is a cubic-kilometer scale neutrino detector installed in the
ice at the geographic South Pole [1]. Reconstruction of direction, energy, and flavor of the neutrinos
relies on the optical detection of Cherenkov radiation emitted by charged particles produced in the
interactions of neutrinos in the surrounding ice or the nearby bedrock.

The IceCubeUpgrade [2] is planned to be deployed during the 2022/2023South Pole Season and
marks the first extension of the IceCube detector since its completion in 2010. Over 700 additional
modules - the majority of which use the mDOM [3] and the D-Egg [4] designs - will be deployed on
seven additional strings (chains of modules in one drill hole). The spacing between optical modules
in the Upgrade will be ∼20 m horizontally and 3 m vertically, compared to ∼ 100 m horizontally and
17 m vertically in IceCube. This denser instrumentation lowers the energy threshold for neutrino
detection, improves event reconstruction, and allows for a more precise calibration of the detector
medium (the ice). Additionally, it will be used for in-situ studies of novel optical sensor designs.
Among these will be the Wavelength-shifting optical module (WOM) of which we are preparing to
deploy 12 units.

2. The IceCube Upgrade WOM

In order to instrument large detector volumes with photo-sensitive sensors capable to resolve
single photons, the general approach is to use photomultiplier tubes in the detector modules. This
means that the financial costs as well as the background noise rate scale linearly with the deployed
sensitive area. By shifting the detection area from PMTs to a photon-capturing tube instead, the
instrumented area is increased significantly by elongating the tube. The light captured by the
tube can be focused on small photocathode areas, lowering the thermionic noise contribution in
comparison to designs using PMTs only.
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Figure 1: Sketch and working principle of the WOM. UV Photons are absorbed, shifted and reemitted by the
wavelength shifting substrate. Reemitted photons are guided to the read-out PMTs by means of total internal
reflection.
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IceCube Upgrade WOM

TheWOM, schematically shown in Figure 1, consists of a transparent tube which is coated with
paint containing wavelength-shifting (WLS) organic luminophores. UV photons incident on the
tube are absorbed in the paint layer with high efficiency and re-emitted isotropically at optical wave-
lengths.
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Figure 2: Absorption and emission profile of the
WLS-paint in blue and orange. The quantum effi-
ciency of the 5" ET9390 is shown in green.

Absorption and emission spectrum of the paint
are shown in relation to the PMT quantum effi-
ciency in Figure 2. If the photon emission angle
is above the critical angle for total internal re-
flection, the photon is trapped in the tube and
guided towards the read-out PMTs at the end
faces. In comparison to the mDOM and the D-
Egg, the WOM offers two unique features: low
overall noise rates, as the photocathode area is
small in comparison to the sensitive area of the
WLS tube, and enhanced UV sensitivity. The
latter is especially desirable in IceCube, since
the Cherenkov spectrum peaks in the UV range.

The WOM concept was first introduced in
[5], the wavelength-shifting paint and the coat-
ing process have been thoroughly investigated
in [6, 7], with testing procedures outlined in
[8]. Here we discuss the specific developments

required for the design and production of IceCube Upgrade WOMs. The choice of PMT and DAQ
are discussed in section 3. The performance of a prototpye WLS tube is discussed in section 4.
For the IceCube Upgrade, the WOM and the required electronics need to be assembled within a
UV-transparent quartz housing serving as pressure vessel. This requirement as well as the manda-
tory filling material between the pressure housing and WLS tube are the content of section 5 and
section 6. Assembly of all components is described in section 7.

3. Photomultiplier and data acquisition

Since the diameter of the PMT constrains the diameters of the wavelength shifting tube as
well as the pressure housing, the choice of PMT model is a critical design decision. The following
requirements were considered:

• A reasonably large diameter to make best use of the available drill hole diameter
• Good efficiency at the edge of the photocathode, needed for coupling to the WLS tube
• Low thermionic noise to demonstrate good noise characteristics for supernova detection
• Gain >5 × 106 at safe voltages, for single photon detection using the selected DAQ
• Flat cathode surface to ease gluing of the tube

Given these requirements, the Electron Tubes ET9330 1 was identified as the closest match and
is currently under detailed investigation.

1https://et-enterprises.com/images/data_sheets/9390B.pdf
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Figure 3: Relative surface sensitivity of the ET9390
Photocathode at 900V supply voltage.

Figure 4: Gain measurement (dots and crosses) and
data sheet values (lines) for different divider configu-
rations.

In order to enable easy integration into the IceCube Upgrade computing and communication
infrastructure, the analog signals from the PMTs will be read out using waveform micro-bases [9].
An IceCube Mini-Mainboard is used to handle communication on the string. The high voltage for
the PMT is supplied using a stagedCockroft-Walton chain implemented on thewaveform micro-base
and as already used on the micro-bases for the mDOM 3" PMTs[3].

Custom adapter printed circuit board (PCBs) were developed to accommodate for the differ-
ences in pin-out and required voltage ratios. Following the manufacturer’s recommendations, a low
gain variant was successfully implemented (see Figure 4, labeled Adapter Variant B). Implementing
the desired high gain configuration (similar to ET Divider Type A) has so far not been successful
as the resulting single-photon charge distributions are very broad with no discernible valley.

Using the voltage ratios as directly available from themicro-base (3:1:1:1:1, see adapter variant
A in Figure 4) results in a high gain of 107 at a bias of ≈1000 V, well below the recommended oper-
ating voltage. The resulting small potential between photocathode and first dynode is unfavorable
as it is likely to result in an inhomogeneous collection efficiency and strong magnetic field depen-
dencies. To gauge this effect, the surface sensitivity was measured using an attenuated pulsed laser
mounted to a translation stage. The relative sensitivity map is shown in Figure 3. The photoactive
area is approximately confined to a 114 mm diameter circle. The asymmetry in the inner diameter
is attributed to the expected inhomogeneous collection efficiency caused by the low bias voltage.
Figure 5 shows the PMT transit time spread using the adapter variant A. The standard deviation is
5.2 ns and thus smaller than the spread introduced in the WLS tube (see subsection 4.2). Further
properties still to be studied include the PMT’s thermionic noise as a function of temperature as
well as dynamic range.

4. Wavelength-shifting Tube

TheWLS-tube consists of quartz glass2 tube which is 76 cm long and 10.6 cm in outer diameter.
The two 5" ET9330 PMTs and the WLS-tube are optically coupled using a UV curing glue3.

2https://www.heraeus.com/media/media/hca/doc_hca/products_and_solutions_8/solids/Solids_
HSQ300_330MF_EN.pdf

3https://www.norlandprod.com/adhesives/NOA146H.html
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Figure 5: Response time spread of the Upgrade
WOM PMT (ET9390).

Figure 6: Photon arrival time distribution for selected
z coordinates. The WLS tube has a length of 76 cm

Figure 7: Light guiding efficiency of the inner Tube
as a function of the I-coordinate. The orange and
blue curves represent the individual efficiencies at
the PMTs and green denotes the overall guiding effi-
ciency.

Figure 8: Capture efficiency of the WLS tube as
a function of the incident light’s wavelength. The
measurement was performed in the middle of the tube
and is corrected for transport losses.

4.1 Efficiency

To determine the WLS-tube efficiency as a function of distance along the tube (z-coordinate)
and wavelength, a setup similar to the one described in [8] is used: The output of a xenon arc
lamp is wavelength selected using a monochromator. The beam is chopped and its intensity is
controlled using a photodiode read out by lock-in amplifiers. Using a movable liquid light guide
allows for measuring the WOM’s efficiency as a function of I and _. The efficiency dependence on
the I-coordinate is shown in Figure 7. It can be concluded that approximately 40 % of the photons
re-emitted by the WLS paint reach the readout PMTs. The measurement in Figure 8 shows that the
process of absorption and re-emission of the wavelength-shifting paint has an efficiency of close to
100 % in the wavelength range from 280 nm to 400 nm.

4.2 Timing

The enhanced UV-sensitivity and low noise of the WOM come at the cost of a 2× wider
distribution in photon arrival times compared to a bare PMT. Here, the major contribution is the
travel time of the photons inside the WLS tube prior to reaching the PMTs. The absorption and
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Figure 9: Measurement of the transmission of several
glass samples considered for the pressure vessel. The
interesting region lies above 250 nm ( grey line).

Figure 10: Transmission of selected filling materials
for the upgrade WOM.

re-emission of the WLS paint plays a minor role due to its fast decay time of 1.35 ns [6]. The arrival
time distribution of the WLS has been measured using a pico-second pulser[10] as light source and
a standalone ADC to digitize the PMT signals. In Figure 6 the arrival time distribution for selected
distances between the light entry point and readout PMT is shown. It can be observed, that for
larger distances, the average arrival time shifts to later times, matching the time shift due to the
effective speed of light in quartz glass. The overall timing resolution is approximated to be 10 ns.

5. Pressure Housing

The choice of the pressure housing is critical, since low UV transmittance or background
from the glass vessel due to radioactive impurities would significantly deteriorate the device’s
performance. In earlier prototypes, the isotope 238Uhas been proven to cause significant background
contribution.

Glass samples from several companies were investigated. The transparency was measured
using a calibrated test stand and samples of different thickness. The results can be seen in Figure 9.
The transmission above 250 nm exceeds 90% for almost all samples, rendering all shown options
viable. For cost effectiveness reasons, the glass HLQ210 was chosen as material for the vessel.

Neutron activation was used to estimate the radioactive backgrounds in the glass to be ap-
proximately 6 Bq kg−1 amounting to a dark noise rate of 114 Hz for a ∼19 kg pressure vessel. This
contribution is negligible compared to the lowest background expected from the PMTs4.

6. Filling material

The optimal filling material between the pressure vessel glass and the inner WLS tube was
chosen based on two derivations: the effective area of the device was first calculated analytically
accounting for all Fresnel transmissions as well as the total internal reflections in the WLS tube as-
suming homogeneous illumination with plane waves. Second, a raytracing Monte Carlo simulation
was modeled taking these effects into account.

4https://et-enterprises.com/images/data_sheets/9390B.pdf
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Figure 11 shows the change in effective area as a function of the refractive index of the filling
material. While the absolute difference between the approaches is still under investigation, they
both demonstrate the optimum refractive index of the filling material is = = 1.33. This opens up
several choices for the filling material with Ethanol and PFPE (Perfluorpolyether) being the most
prominent. We prefer PFPE over Ethanol due to the higher vapor pressure and chemical inertness.
Its refractive index is = = 1.30 and it shows good transparency in the UV, as shown in Figure 10.

7. WOM Assembly
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Figure 11: Effective area of the fully module as a
function of the refractive index = of the filling material
obtained in two ways: an analytical derivation (blue)
as well as a MC simulation of the device (orange).

The general mechanical design for the Ice-
Cube Upgrade WOM is shown in Figure 12.
The outer assembly features a quartz5 pressure
vessel together with borosilicate endcaps which
are attached to the pressure vessel by pulling a
vacuum of approximately 0.5 bar on the inside.
A penetrator on the top end cap allows for com-
munication and powering of the device.

The module has to withstand a pressure of
up to 700 bar during deployment in the ice. To
ease handling and enable pressure testing, the
length of the glass vesselwas restricted to 1.3m.
This in turn limits the available space for elec-
tronics as well as the length of the inner tube.
The outer diameter of the vessel is 173mm, set
by the 5" PMTs. The vessel is fixed on the
string by two pipe clamps connecting to custom

clamps on a load-bearing cable. One cable clamp acts as guide only, to allow the cable to extend 1%
in length under load. In order to prevent vertical movement of the module, which slightly shrinks
under pressure, metal bands are crossed above the end caps and welded to the pipe clamps.
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Figure 12: CAD drawing of the assembled WOM module.

The weight of the full module is mainly due to the approximately 19 kg of the vessel. The
inner part consists of the WLS tube with attached PMTs, as described in section 4. The two PMTs

5https://www.heraeus.com/media/media/hca/doc_hca/products_and_solutions_8/solids/Solids_
HSQ300_330MF_EN.pdf
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are embedded in a silicone6 wrapper which matches the inner diameter of the pressure housing.
The silicone confines the filling material7 to the space between the PMTs. Feedthrough holes for
electronic cables as well as a pressure valve allow for pouring of the filling material and for pressure
compensation during deployment.

8. Summary and Outlook

The Wavelength-shifting optical module is a UV-sensitive, low-noise photosensor which is
being developed for the IceCube Upgrade. With this design, we obtain an effective area of approx-
imately 19 cm2. It is most sensitive to photons between 280 nm to 400 nm. The aim is to deploy
the devices in clusters within the IceCube Upgrade array to locally lower the energy threshold, thus
enhancing the resolution of low energy neutrino reconstructions. The reduced average noise also
improves the sensitivity to supernova neutrinos, which are not individually resolvable but result in
a small temporal rate increase over the rate of background events. The large and easily scalable
effective area of the WOM in combination with the low inherent noise makes it interesting for other
applications, e.g. instrumenting large veto volumes for particle detectors. The WOM is already
incorporated into the design of the ShiP [11] experiment, based on a modified version without
pressure vessel and using SiPMs instead of PMTs [12].
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